Spatio-temporal characterization of the equatorial electrojet
from CHAMP, Ørsted, and SAC-C satellite magnetic
measurements

Patrick Alken
Department of Physics, University of Colorado, Boulder, Colorado, USA, Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder, Colorado, USA, National Geophysical Data Center,
NOAA, Boulder, Colorado, USA

Stefan Maus
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA,
National Geophysical Data Center, NOAA, Boulder, Colorado, USA

Abstract. The equatorial electrojet (EEJ) is an eastward electric current on the day-
side, flowing in a narrow band along the dip equator in the ionospheric E-region. Re-
cent magnetic observations from the CHAMP, Ørsted, and SAC-C satellites, comprising
more than 95,000 dip equator crossings from 1999 to 2006, have provided an unprece-
dented longitudinal coverage of the EEJ magnetic signature. We have used these data
to construct an empirical model of the EEJ current climatological mean and day to day
variability as a function of longitude, local time, season, and solar flux. Our model has
been successfully verified against vertical drift data from the JULIA radar at Jicamarca.
We have also used the EEJ observations to estimate the self-correlation of the EEJ, con-
firming short longitudinal correlation lengths of 15° and finding a temporal correlation
length of 2.4 hours. Our model’s predictions of the eastward electric field and its stan-
dard deviation may provide useful input to various kinds of ionospheric simulations. Co-
efficients and software are available online at http://models.geomag.us/EEJ.html and

1. Introduction

In the ionospheric E-region, tidal winds drive currents
during the daytime which, together with the magnetic field,
cause the accumulation of positive and negative charges at
the dawn and dusk terminators respectively, resulting in a
strong eastward electric field along the magnetic equator.
This gives rise to the Hall and Pederson currents, and Cowl-
ing [1933] showed that when a Hall current is restricted by
the presence of boundaries, the effective (Cowling) conduc-
tivity parallel to the boundaries is significantly enhanced be-
yond the normal Pederson conductivity. It was later realized
that the presence of low conducting layers above and below
the E-region are sufficient to drive this Cowling conductivity
near the magnetic equator, giving rise to the equatorial
electrojet (EEJ) [see Heelis, 2004; Forbes, 1981].

The geomagnetic observatory at Huancayo facilitated the
discovery of the EEJ and provided data for many early stud-
ies [Bartels and Johnston, 1940a, b; Chapman, 1951; Egedal,
1947, 1948], which focused on explaining the mechanism be-
hind the current flow. It was also discovered that the cur-
rent sometimes reversed direction during certain morning
and evening hours, which became known as the “counter-
electrojet” [Goin and Mayaud, 1967]. Physical models and
theories were developed in the 1970s which studied the verti-
cal (Hall) current flow, longitudinal and local time structure
of the EEJ, and the effects of local winds on the EEJ [Sug-
vira and Poros, 1969; Richmond, 1973; Forbes and Lindzen,
1976]. There have since been many studies of the EEJ based
on ground observatory data [Arora et al., 1993; Rigoti et al.,
1999; Doumouya et al., 1998, 2003], which further study
its main characteristics (day to day and seasonal variabil-
ity, longitudinal and local time structure, counter-electrojet,
etc). A new generation of satellite magnetic data provides
a longitudinal and temporal coverage of the EEJ previously
unattainable with ground based observations alone. In our
study, we used data from the CHAMP, Ørsted, and SAC-
C satellites from 1999 to 2006 comprising over 95,000 dip
equator crossings, to characterize the EEJ in longitude and
time, and we have created climatological models of the EEJ
mean and variance.

There have been previous attempts in creating EEJ
models, both theoretical and empirical. Most theoretical
approaches have assumed various current distribu-
tions and analyzed the resulting magnetic effects [Forbush
and Casavera, 1961; Chapman, 1951; Fambbiakoye and
Mayaud, 1976; Onwumechili, 1967; Untiedt, 1967]. The em-
pirical study of Doumouya et al. [2003] is based on ground
observatory data and cannot offer a complete characteri-
ization of the EEJ in longitude. The empirical model of
Onwumechili and Ecsma [1992] was based on POGO satel-
ite data and provided measurements of several important
quantities (mean peak current density, mean total eastward
current, mean latitudinal extent, etc), but did not offer lon-
gitudinal or seasonal profiles of the EEJ. Furthermore, most
previous studies have focused on fitting the observed mag-
netic data. Our approach instead was to invert the magnetic
data to obtain the actual currents and fit a model to the cur-
rent density. This allows us to model the eastward electric
field in addition to the EEJ current, using an appropriate
conductivity model. We believe this to be the first empirical
model of the actual EEJ sheet current density.

In Section 2 we give an overview of the satellite models.
In Section 3 we discuss our validation of the models using
vertical drifts. Finally, in Section 4 we use the models to
discuss the spatial and temporal self-correlation of the EEJ.
2. Climatological Model of the Equatorial Electrojet

To construct a useful model of the equatorial electrojet, we investigate the mean value of the electrojet current, and its deviation from the mean. By deviation, we refer to the actual day to day variability of the current strength about its climatological mean. The mean and standard deviation are functions of the winds, electric field, and conductivity in the E-region. Since the satellites do not directly measure these quantities, we must use other parameters. We found that the EEJ can be modeled well by using four parameters. They are longitude, local time, season, and EUVAC. EUVAC (Extreme UltraViolet flux model for Aeronomic Calculations, [Richards et al., 1994]) is defined as $(F_{10.7} + F_{10.7A})/2$, where $F_{10.7}$ is a proxy for the daily solar flux at 10.7 cm wavelength, and $F_{10.7A}$ is the 81 day centered average of $F_{10.7}$. EUVAC has been shown to better represent EUV intensities than $F_{10.7}$ alone [Liu et al., 2006]. The longitudinal and local time dependence of the current is readily apparent. But there are also significant peaks in the current during equinox and so the seasonal dependence is very important. Also, we find a clear linear relationship between the electrojet strength and EUVAC.

2.1. Satellite Data

Our three climatological models of the EEJ are based entirely on data obtained from the CHAMP, Ørsted, and SAC-C satellites. The CHAMP satellite was launched in July 2000 into a near polar circular orbit with an initial altitude of 454 km. It drifts slowly in local time, decreasing one hour every eleven days, and completes an orbit every 92 minutes. CHAMP has scalar and vector magnetometers which provided the data used for the current inversion.

Ørsted was launched in February 1999 into a retrograde orbit with an apogee of about 850 km and a perigee of about 640 km. It also drifts slowly in local time, decreasing 0.88 minutes/day, and completes an orbit every 100 minutes. It carries the same scalar and vector magnetometers as CHAMP, but the orientation of the vector magnetometer is given by a less accurate star camera.

SAC-C was launched in November 2000 into a polar circular orbit of altitude 702 km. Its orbit is sun-synchronous, so it stays at a fixed local time of about 10:25 AM. Consequently, it passes over the dip equator close to the peak EEJ strength. SAC-C only provides scalar magnetometer data.

In a procedure similar to the one described in Lühr et al. [2004], we inverted the magnetic field readings to obtain the EEJ currents. This was first done by subtracting the POMME-3.1 model [Maus et al., 2006] from the magnetic measurements, removing contributions from the core, mantle, crust, and magnetosphere. The remaining signal is a combination of Sq and the equatorial electrojet. A background Sq signal was fitted to the remaining signal outside a ±12° window around the dip equator and then subtracted to get a clean EEJ signal. Finally, we assumed line currents spaced at 0.5 degrees following constant corrected geomagnetic (cgm) latitude (defined as quasi-dipole coordinates in Richmond [1995]) up to the horizon on both sides of the satellite orbit at 108 km altitude above the geoid, and inverted the magnetic signal for the line current strength. This
procedure does not yield the actual current density, but a height integrated sheet current density. Fig. 1 shows sample magnetic signatures for several passes over the dip equator after subtracting the POMME-3.1 model, and the resulting sheet current densities from the inversion process. We initially inverted all satellite passes over the dip equator, except for those which contained large data gaps. However, for the final EEJ model, we restricted our data to days with KP ≤ 2, and used only inversion results from the scalar satellite magnetometers. The vector magnetometer data from CHAMP and Ørsted were used to verify the scalar data, in particular to calibrate the zero level of the currents. Due to the more complete coverage of the scalar data, only these were used in the final model. As can be seen in Fig. 1, the CHAMP data provides the cleanest EEJ signatures. Because its altitude is lower than the other two satellites, it can more sharply resolve the peak in the magnetic signature, and we believe the EEJ model resulting from CHAMP to be the most trustworthy of the three models we created.

2.2. The EEJ Mean

We represent the mean sheet current density at the dip equator by

\[
\mu(\phi, t, s, e) = \sum_{i=0}^{N_\phi} \sum_{j=0}^{N_t} \sum_{k=0}^{N_s} \sum_{l=0}^{N_e} a_{ijkl} u_i(\phi) v_j(t) w_k(s) y_l(e),
\]

(1)

where \(\phi \) is longitude, \(t \) is local time, \(s \) is season (day of year), and \(e \) is EUVAC. The coefficients \(a_{ijkl} \) were estimated by minimizing the misfit given by

\[
\epsilon = \sum_i (J_{eq}^i - \mu(\phi_i, t_i, s_i, e_i))^2,
\]

(2)

where \(J_{eq}^i \) is the current value at the dip equator. The basis functions are given by

\[
\begin{align*}
u_i(\phi) &= \left\{ \begin{array}{ll}
\cos \left(\frac{i\phi}{2} \right) & \text{for } i \text{ even} \\
\sin \left(\frac{(i+1)\phi}{2} \right) & \text{for } i \text{ odd}
\end{array} \right. \\
v_j(t) &= B_j(t) \\
w_k(s) &= \left\{ \begin{array}{ll}
\cos \left(\frac{2k\pi}{365.25} (s - s_0) \right) & \text{for } k \text{ even} \\
\sin \left(\frac{2k\pi}{365.25} (s - s_0) \right) & \text{for } k \text{ odd}
\end{array} \right. \\
y_l(e) &= e^l
\end{align*}
\]

(3)

The choice of basis functions is justified as follows: The longitudinal function \(u_i(\phi) \) was chosen to be the standard sine and cosine representation which models well the periodicity in the longitude parameter. We chose \(N_\phi = 8 \) empirically to give a good fit in longitude. There was no natural basis function to use for the local time dependence, so we modeled this variable using cubic B-splines with uniform knots. We used the value \(N_t = 7 \). The seasonal basis function \(w_k(s) \) was chosen based on the observation that the electrojet strength peaks at equinox and that there are differences between summer and winter. The value of the parameter \(s_0 \) is the day of the March equinox. The choice \(N_s = 2 \) provides a double peaked cosine for the peaks at March and September equinox, and a sine function for the summer/winter difference. Finally, due to the observed linear dependence of

2.2.1. Results

2.2.1.1. Longitudinal dependence of the EEJ

![Figure 2. Longitudinal dependence of EEJ for different seasons. These plots have local time fixed at 10:30am, and EUVAC = 150 W/m².](image-url)
One of the interesting results of this model is the longitudinal profile of the EEJ, which was previously unattainable with ground based data alone. In Fig. 2 we plot 1-D longitudinal slices of the mean model for different seasons while holding local time and EUVAC fixed. During March and September equinox and June solstice we see a clear wavenumber-four signature of the EEJ. England et al. [2006] discuss this behavior, which they attribute to a wavenumber-four pattern in the diurnal tide, for a fixed local time. As discussed in Forbes et al. [2006], however, there is actually a wavenumber-three eastward propagating diurnal tide as viewed in a sun-fixed frame, but when it is viewed in a fixed local time frame which is westward propagating with respect to the sun-fixed frame, it appears as a wavenumber-four signature. During December solstice, we see a prominent wavenumber-three signature. It is reasonable to expect that this behavior is also due to the wind patterns, which we investigated using the wind model GSWM-02 [see Hagan and Forbes, 2002]. Since the EEJ is affected by winds in both the northern and southern hemispheres, we added the meridional wind speeds at 24° and -24° latitude to produce a signal which could be compared to the electrojet strength. The latitudes were chosen based on where the wind velocities peak, and the resulting signal contains information on the northern and southern winds which both contribute to the eastward electric field which drives the EEJ. The wind and EEJ profiles are taken at 12:00LT along all longitudes. The results are shown in Fig. 3. We do find a wavenumber-three structure in the winds during solstice. For reference, we also show the signals during March equinox. We see a significant phase shift between the two signals during solstice, and a smaller shift during equinox. To explain these shifts, one would have to take the global wind field into account, rather than just the wind at the longitude of the EEJ measurement.

2.2.1.2. Local time dependence of the EEJ

In Fig. 4 we plot the local time dependence of the EEJ for different longitudes and seasons. For different longitudes, the current follows the same basic pattern. Near sunrise, we see significant westward, counter electrojet currents. Then the current rises sharply to a maximum between 10:30-12:00LT, and gradually decreases and dies out at around 18:00LT. Interestingly, there appears to be a double peak at ± 45°. We believe this may be due to zonal winds in the thermosphere which reverse from westward to eastward during the time of the second peak. We plan to investigate these wind effects in a future study.

We find that during solstice, the EEJ peak is significantly weaker than during equinox, and also peaks closer to local noon. These results are in good agreement with the empirical model of Doumouya et al. [2003]. The SAC-C model is not shown here since the satellite does not drift in local time.

2.2.1.3. Seasonal dependence of the EEJ

As discussed previously, the EEJ is significantly stronger during equinox than during solstice. Tarpley [1973] explains this behavior in terms of seasonal shifts of the Sq foci. He demonstrates that the foci of the Sq current system in both the northern and southern hemi-
spheres shift toward the equator during equinox, and shift toward the poles during solstice. This explains the strengthening and weakening of the EEJ during these seasons. Since the total eastward current between the foci is roughly the same throughout all seasons, as the foci shift equatorward during equinox, the EEJ intensity will increase. As the foci shift poleward during solstice, the EEJ intensity decreases. We plot the seasonal dependence of the EEJ for all three satellites in Fig. 5 for several different longitudes. The maxima at equinox and minima at solstice are present for all longitudes. In several cases we see that the SAC-C and CHAMP models match up well but Ørsted does not. We attribute this to the fact that Ørsted drifts very slowly in local time, and so there is very little separation between seasonal and local time effects. Because season and local time are not really independent parameters in the Ørsted model, their independent effects could be mapped into each other, causing disagreements with the other two models.
Figure 5. Seasonal dependence of EEJ for different longitudes. These plots have local time fixed at 10:30am, and EUVAC = 150 W/m2. The longitude values were chosen to well represent the position of the peaks and troughs of the longitudinal profiles from Fig. 2.

2.3. The EEJ Deviation

As discussed in Sec. 2.2, we also created a climatological model of the EEJ temporal variability as given by its standard deviation from the climatological mean. To do this, we took each EEJ current data point and subtracted the climatological mean model we discussed above. This produced the dataset used to fit the deviation model, which represents the actual day to day variability of the EEJ. We used the same fitting procedure and basis functions as for the mean fit. Plots of the EEJ mean and its deviation from the CHAMP satellite are shown in Fig. 6. As can be seen, the day to day variability of the EEJ is significant.

Figure 6. EEJ means with standard deviation curves plotted against all four model parameters for the CHAMP satellite. The standard deviations indicate the typical daily variability of the EEJ strength. All plots except for the longitudinal dependence were generated for $\phi = 100^\circ$. Similarly, the other fixed parameters are local time: 10:30am, season: March equinox, EUVAC: 150 W/m2.
3. Verifying the Model Against Vertical Drifts

To validate our equatorial electrojet model, we predicted mean vertical drifts at the JULIA radar location at Jicamarca near Lima, Peru, and then compared the predictions with the actual drift data taken. JULIA is a coherent scatter radar data acquisition system which uses the main Jicamarca antenna array to make high quality measurements of 150 km drift echoes. Positive values of these echoes correspond to negative Doppler shifts, and thus upward drift motion. The vertical drift data is typically available from about 10:30LT to about 16:00LT. To relate the EEJ to the vertical drifts, we estimate an effective height-integrated conductivity, which we describe below.

3.1. Conductivity Model

Robinson and Vondrak [1984] derive the conductivity relations

\[\sigma_p = a_p \left[S_a \cos(\chi) \right]^b \]
\[\sigma_h = a_h \left[S_a \cos(\chi) \right]^b \]

for the Pederson and Hall conductivities, where \(\chi \) is the solar zenith angle, \(S_a \) is the F10.7 value, and the parameters \(a_h, a_p, \) and \(b \) are to be determined by fitting data. In analogy, we model the effective conductivity \(\sigma_e \) as:

\[\sigma_e(\chi, S_a) = a_e \left[S_a \cos(\chi) \right]^b, \]

where we are using EUVAC for \(S_a \) instead of F10.7. This is a model with two parameters \((a_e, b) \) that have to be estimated.

To determine these parameters, we picked all CHAMP current measurements taken within ±5 degrees longitude of the JULIA radar. We then took all JULIA vertical drift measurements within ±20 minutes of the satellite pass and averaged them to get a drift velocity corresponding to our EEJ current measurement. We then used the relation \(J = \sigma_e E \) to least squares fit our data pairs to the \(\sigma_e \) model. This procedure yielded the values

\[a_e = 48.4 \sqrt{\frac{m^2 A}{\mu s}} \]
\[b = 0.358 \]

The correlation of the original \((J, E)\) data pairs was 0.83. As shown in Fig. 7, our conductivity model improves this to 0.91.

3.2. Comparing the EEJ and Drift Models

Using the \(\sigma_e \) model, we compared our climatological EEJ model from CHAMP with a climatological model of the vertical drifts at JULIA for all drift data taken from August 2001 to May 2006. The drift model was created using the same method as for the EEJ model, with a fixed longitude. The resulting model is a function of local time, season and EUVAC. We then sampled the two models over all parameter space (keeping longitude fixed in the EEJ model) and correlated the value of \(J \) with \(\sigma_e E \). This procedure yielded a correlation coefficient of 0.93. We also computed the rms error between the models defined as

\[\epsilon_{rms} = \sqrt{\frac{1}{V} \int \left(\frac{J(m)}{\sigma_e(m)B - v(m)} \right)^2 dm} \]

where \(m \) represents the model parameters and is integrated over all of parameter space of volume \(V \). \(v(m) \) is the vertical drift velocity model derived from JULIA data, \(J(m) \) is the mean EEJ model derived from CHAMP data, and \(\sigma_e(m) \) is the effective conductivity model described in Sec. 3.1. \(B \) is taken to be the magnetic field intensity at 150 km above the JULIA radar. We found \(\epsilon_{rms} = 2.3 \text{ m/s} \), which corresponds to 55.8\(\mu \text{V/m} \) uncertainty in the climatological mean of the eastward electric field predicted by our EEJ model.

4. Electrojet Self-Correlation
Using the models of the mean and standard deviation of the EEJ, we can address the interesting question of finding the correlation lengths of the EEJ in both longitude and time. The correlation of the EEJ with itself in time has been studied by Manoj et al. [2006] by correlating data from ground based observatories and the CHAMP satellite. However, the satellite based models of the EEJ mean and standard deviation make it possible to correlate the EEJ with itself in time as well. First, in analogy with the one-dimensional Pearson correlation coefficient [Weatherburn, 1962, p. 72], we define a two-dimensional correlation function as

\[
r_{ij}(d\phi, dUT) = \frac{1}{N} \sum_{i=1}^{N} \frac{J_i^{(1)}(d\phi_i^{(1)}, d\phi_i^{(2)}, s_i^{(1)}, s_i^{(2)}, e_i^{(1)}, e_i^{(2)})}{\sigma^{(1)}(d\phi_i^{(1)}, d\phi_i^{(2)}, s_i^{(1)}, s_i^{(2)}, e_i^{(1)}, e_i^{(2)})} \times \frac{J_j^{(2)}(d\phi_j^{(2)}, d\phi_j^{(2)}, s_j^{(2)}, s_j^{(2)}, e_j^{(2)}, e_j^{(2)})}{\sigma^{(2)}(d\phi_j^{(2)}, d\phi_j^{(2)}, s_j^{(2)}, s_j^{(2)}, e_j^{(2)}, e_j^{(2)})}
\]

where the \(J_i \) are the sheet current densities from the inversion procedure discussed in Sec. 2, \(\mu \) is the climatological mean EEJ model, and \(\sigma \) is the climatological deviation model. The superscripts 1 and 2 refer to two different satellites; in our analysis we correlated the CHAMP and Ørsted satellite data. This equation is analogous to the standard Pearson correlation, however since each satellite data point \(J_i \) was measured at a specific longitude, local time, season and EUVAC, we subtract the EEJ mean and divide by its deviation using our climatological models for those specific parameters. The \(N \) pairs \((J_i^{(1)}, J_i^{(2)}) \) occur when the following conditions are met:

\[
|\phi_i^{(1)} - \phi_i^{(2)}| < d\phi \\
|UT_i^{(1)} - UT_i^{(2)}| < dUT
\]

This represents the correlation coefficient between the electrojet strength at one point, and its strength at a different point \(d\phi \) away in longitude and \(dUT \) away in time. The values \(J_i^{(1)} \) were measured by CHAMP and the values \(J_i^{(2)} \) were measured by Ørsted which crossed the electrojet at some \(d\phi \) and \(dUT \) away from the CHAMP crossing. Since the mean and deviation models were constructed from all available satellite data (with \(KP \leq 2 \)), the correlation is not guaranteed to peak at 1, since for a given \(d\phi \) and \(dUT \), the data points which satisfy Eqs. (8) are a small subset of the total satellite data set.

An alternative way to define the EEJ self-correlation, would be to simply bin the data pairs \((J_i^{(1)}, J_i^{(2)}) \) using a four-dimensional grid in longitude, local time, season and EUVAC, and then compute the standard correlation coefficient of each bin. However, we found that there are simply not enough data pairs to populate the bins for reasonable bin sizes, and therefore it is not possible to obtain a meaningful correlation with this method. Our approach above avoids this problem by using the previously calculated models as estimates of the mean and deviation for each satellite data measurement.

We can now assume, as before, that the correlation function can be expanded in a basis as follows:

\[
r_{ij}(d\phi, dUT) = \sum_{i=0}^{N_{d\phi}} \sum_{j=0}^{N_{dUT}} r_{ij} \alpha_i(d\phi) \beta_j(dUT),
\]

where the coefficients \(r_{ij} \) are to be determined by least squares fitting. We used cubic B-splines for both basis functions \(\alpha_i(d\phi) \) and \(\beta_j(dUT) \), with \(N_{d\phi} = 9 \) and \(N_{dUT} = 7 \). We allow all possible longitudinal separations of the satellites, but restrict the temporal separation \(dUT \) to be within 6 hours, which we found was large enough for the correlation to drop well below statistical significance.

To construct this fit, we first selected all data from both satellites with \(KP \leq 2 \), and with a local time between 9am and 3pm. The local time interval was

![Figure 8](image-url) Left: In red, the correlation fit of CHAMP and Ørsted as a function of longitudinal separation for \(dUT = 0 \). In green, a correlation of the raw data with \(|dUT| < 60 \) minutes and longitudinal bin size of 10°. Right: In red, the correlation fit of CHAMP and Ørsted as a function of temporal separation for \(d\phi = 0 \). In green, a correlation of the raw data with \(|d\phi| < 10^\circ \) and a temporal bin size of 60 minutes.
chosen so that there is a significant electrojet signal to correlate, to avoid correlating counter-electrojet events, and to avoid numerical problems with correlating noise. Once this data was selected, we picked out crossing events. A crossing event occurs when the two satellites cross the electrojet within 6 hours of each other. When this occurs, the pair \((J^{(1)}, J^{(2)})\) was added to the dataset used to estimate the correlation. Using the CHAMP and Ørsted satellites for the correlation, this procedure yielded about 18,000 crossing pairs. We then used a least squares procedure to compute the \(r_{ij}\) coefficients of the fit. To verify the results, we also computed a correlation curve by binning the \((d\phi, dUT)\) data and correlating the current pairs in each bin. The \(d\phi\) bin size was 10° and the \(dUT\) bin size was 60 minutes. We used this as our control curve to compare to the fit. They are in good agreement, and the resulting curves are shown in Fig. 8.

In longitude, the correlation drops to 0.7 after 15° separation, which is in good agreement with the study of Manoj et al. [2006] who correlated ground data and CHAMP satellite data and also found a correlation of 0.7 after about 15° longitudinal separation. In time, our correlation drops to 0.7 after about 2.4 hours.

5. Conclusion

We have constructed climatological models of the Equatorial Electrojet based on satellite data from CHAMP, Ørsted, and SAC-C. The models are based on data which comprise half of a solar cycle (from solar maximum to solar minimum). The models exhibit the well known wavenumber-four longitudinal structure at equinox, and we find a wavenumber-three structure at December solstice, which we show is also present in equinox, and we find a wavenumber-three structure at December solstice, which we show is also present in equinox, and we find a wavenumber-three structure.

Acknowledgments. We thank Claudia Stolle and Hermann Lühr for their helpful comments on an earlier version of this manuscript. The operational support of the CHAMP mission by the German Aerospace Center (DLR) and GeoForschungsZentrum are gratefully acknowledged. The Ørsted and SAC-C projects received extensive support from the Danish government, the Argentine Commission on Space Initiatives, NASA, ESA, CNES and DARA.

References

Fambitakoye, O., and P. N. Mayaud (1976), The equatorial electrojet and regular daily variation \(S_g-1\). A determination of the equatorial electrojet parameters, J. Atmos. Terres. Phys., 38, 1–17.

